

OBECABTAGENE AUTOLEUCEL (OBE-CEL, AUTO1) FOR RELAPSED/REFRACTORY ADULT B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA (R/R B-ALL): POOLED ANALYSIS OF THE ONGOING FELIX PHASE IB/II STUDY

<u>Claire Roddie</u>,¹ Karamjeet S. Sandhu,² Eleni Tholouli,³ Paul Shaughnessy,⁴ Pere Barba,⁵ Manuel Guerreiro,⁶ Michael R. Bishop,⁷ Jean A. Yared,⁸ Armin Ghobadi,⁹ Deborah Yallop,¹⁰ Aaron C. Logan,¹¹ Amer M. Beitinjaneh,¹² Jeremy M. Pantin,¹³ Martha L. Arellano,¹⁴ Sridhar Chaganti,¹⁵ Ram Malladi,¹⁶ Tobias Menne,¹⁷ Virginia Escamilla Gómez,¹⁸ Katharine Hodby,¹⁹ Krishna Gundabolu,²⁰ Luke Mountjoy,²¹ Kristen M. O'Dwyer,²² Sameem Abedin,²³ Hassan B. Alkhateeb,²⁴ Bijal D. Shah,²⁵ Pierre Lao-Sirieix,²⁶ Gianfranco Pittari,²⁷ Kapil Saxena,²⁸ Yiyun Zhang,²⁸ Wolfram Brugger,²⁹ Martin A. Pule,²⁶ Jae H. Park,³⁰ Daniel J. DeAngelo,³¹ Elias Jabbour³²

¹University College London Cancer Institute, London, UK; ²City of Hope National Medical Center, Duarte, CA, USA; ³Manchester Royal Infirmary, Manchester, UK; ⁴Sarah Cannon Transplant and Cellular Therapy Program, Methodist Hospital, San Antonio, TX, USA; ⁵Hospital Universitari Vall d'Hebron-Universitat Autónoma de Barcelona, Barcelona, Spain; ⁶Hospital Universitari I Politècnic La Fe, Valencia, Spain; ⁷The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, USA; ⁸University of Maryland, Baltimore, MD, USA; ⁹Washington University School of Medicine, St. Louis, MO, USA; ¹⁰King's College Hospital London, UK; ¹¹Hematology, Blood and Marrow Transplantation, and Cellular Therapy Program, University of California at San Francisco, San Francisco, CA, USA; ¹²University of Miami, Miami, FL, USA; ¹³Sarah Cannon Transplant and Cellular Therapy Program, Nashville, TN, USA; ¹⁴Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹⁵University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; ¹⁶Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; ¹⁷Newcastle Upon Tyne NHS Hospitals Foundation Trust, Newcastle, UK; ¹⁸Hospital Universitario Virgen del Rocío Sevilla, Seville, Spain; ¹⁹University Hospital Bristol, Bristol, UK; ²⁰University of Nebraska Medical Center, Omaha, NE, USA; ²¹Colorado Blood Cancer Institute, Denver, CO, USA; ²²University of Rochester Medical Center, Rochester, NY, USA; ²³Medical College of Wisconsin, Milwaukee, WI, USA; ²⁴Mayo Clinic, Rochester, MN, USA; ²⁵Moffitt Cancer Center, New York, NY, USA; ³¹Dana-Farber Cancer Institute, Boston, MA, USA; ³²University of Texas MD Anderson Cancer Center, Houston, TX, USA

Background

- Obecabtagene autoleucel (obe-cel) is an autologous CAR-T cell product, which utilizes a fast off-rate CD19 binder to reduce toxicity and improve persistence^{1,2}
- The clinical activity of obe-cel has been evaluated in Phase I studies in R/R pediatric¹ and adult B-ALL,² and other B-cell malignancies including B-NHL and B-CLL³
- The FELIX study (NCT04404660) is a pivotal study of obe-cel in R/R adult B-ALL; preliminary results from the Phase IIA cohort were recently presented⁴

We present results from the FELIX Phase Ib/II study as a pooled analysis of all patients treated to date with obe-cel, including patients with low leukemic burden^{*} at treatment

*Defined as morphological remission per investigator assessment (<5% BM blasts without EMD) as measured at screening and lymphodepletion

B-ALL, B-cell acute lymphoblastic leukemia; B-CLL, B-cell chronic lymphocytic leukemia; BM, bone marrow; B-NHL, B-cell non-Hodgkin lymphoma; CAR-T, chimeric antigen receptor T-cell; CD19, cluster of differentiation 19; EMD, extramedullary disease; R/R, relapsed/refractory

1. Ghorashian S, et al. Nat Med 2019;25(9):1408–14; 2. Roddie C, et al. J Clin Oncol 2021;39(30):3352–63; 3. Roddie C, et al. Blood 2022;140(Suppl. 1):7452–3, ASH abstract; 4. Roddie C, et al. J Clin Oncol 2023;41(16 Suppl):7000

FELIX: obe-cel tested in adults with R/R B-ALL

Study design with leukemic burden-adjusted split dosing

B-ALL, B-cell acute lymphoblastic leukemia; BM, bone marrow; BMA, bone marrow analysis; CAR-T, chimeric antigen receptor T-cell; CRS, cytokine release syndrome; cy, cyclophosphamide; flu, fludarabine; ICANS, immune effector cell-associated neurotoxicity syndrome; obe-cel, obecabtagene autoleucel; R/R, relapsed/refractory

FELIX: patient eligibility and endpoints

Selected endpoints[‡]

- CR/CRi rate per IRRC
- DoREFS§
- OS

- MRD-negativity rate(<10⁻⁴)
- Safety
- CAR-T expansion/persistence
- Manufacture feasibility

*R/R B-ALL: primary refractory; first relapse if first remission <12 months; R/R disease after >2 lines of systemic therapy; R/R disease after allogeneic transplant; R/R Philadelphia chromosome-positive ALL if intolerant to/failed two lines of any TKI or one line of second-generation TKI, or if TKI therapy is contraindicated

[‡]Primary endpoints: Cohorts A and C, ORR defined as the proportion of patients achieving CR or CRi; Cohort IIB, the proportion of patients achieving MRD-negative remission (<10⁻⁴ leukemic cells) [§]EFS: the time from date of first infusion to the earliest of treatment failure, relapse, or death from any cause

ALL, acute lymphoblastic leukemia; B-ALL, B-cell acute lymphoblastic leukemia; BM, bone marrow; CAR-T, chimeric antigen receptor T-cell; CR, complete remission; CRi, CR with incomplete hematologic recovery; DoR, duration of remission; EFS, event-free survival; EMD, extramedullary disease; IRRC, Independent Response Review Committee; MRD, measurable residual disease; ORR, overall remission rate; OS, overall survival; R/R, relapsed/refractory; TKI, tyrosine kinase inhibitor

FELIX: patient disposition

127/153 (83%) enrolled patients received obe-cel*

FELIX: baseline characteristics

Heavily pre-treated patients (many post-allogeneic SCT)

	All treated patients (N = 127)
	n (%)*
Median age, years (range)	47 (20–81)
Male/female	66/61 (52/48)
Asian Black or African American White Unknown Hispanic or Latino	16 (13) 2 (2) 94 (74) 15 (12) 38 (30)
Philadelphia chromosome-positive	36 (28)
Prior therapies, median (range) ≥3 prior lines	2 (1–6) 44 (35)
Prior allogeneic SCT	56 (44)
Prior blinatumomab Prior inotuzumab Prior blinatumomab and inotuzumab	53 (42) 40 (31) 21 (17)
BM blasts % at screening, median (range)	36 (0–100)
EMD at screening	29 (23)

FELIX: obe-cel manufacturing

Robust and rapid manufacturing, despite variable starting material

Release parameters

Vein-to-release time

- Obe-cel was released for 95% of patients, with a median time from vein-to-release of 22 days •
- Consistent manufacturing was observed, despite leukapheresis from patients with multiple • lines of prior therapy (many with prior allogeneic SCT) and high leukemic burden

FELIX: remission rate and MRD by status at lymphodepletion

High MRD-negative remission rates were observed after obe-cel

Morphologic disease* (n = 98)

- 74% of patients had CR/CRi (n = 73)
- 95% of evaluated responders were MRD-negative[‡]

No morphologic disease (n = 29)

All treated

patients

(N = 127)

100% of evaluable patients were MRD-negative§

*Morphologic disease defined as ≥5% BM blasts or presence of EMD regardless of BM blast status ‡MRD status available for 64/73 patients, as assessed by NGS or flow cytometry §MRD status available for 27/29 patients, as assessed by NGS or flow cytometry BM, bone marrow; CR, complete remission; CRi, CR with incomplete hematologic recovery; EMD, extramedullary disease; MRD, measurable residual disease; NGS, next-generation sequencing; obe-cel, obecabtagene autoleucel

FELIX: CR/CRi subgroup analysis per IRRC

Obe-cel demonstrated high CR/CRi rates across all subgroups

Subgroup		Total, n (%)	ORR, % (95% CI)			*		+	
Overall		127 (100)	78 (70, 85)					_ _	
Age, years	18–39 40–64 ≥65	48 (38) 54 (43) 25 (20)	63 (47, 76) 83 (71, 92) 96 (80, 100)			_	•		-
Hispanic or Latino	Yes No/Unknown	38 (30) 89 (70)	66 (49, 80) 83 (74, 90)			-	•		
EMD at lymphodepletion	Yes No	27 (21) 100 (79)	59 (39, 78) 83 (74, 90)				•		
BM blasts % at lymphodepletion	<5 ≥5−≤75 >75	36 (28) 51 (40) 40 (31)	86 (71, 95) 84 (71, 93) 63 (46, 77)				•		_
Philadelphia chromosome-positive	Yes No	36 (28) 91 (72)	92 (78, 98) 73 (62, 81)					●	•
Prior therapies	1 2 3 ≥4	30 (24) 53 (42) 25 (20) 19 (15)	83 (65, 94) 79 (66, 89) 88 (69, 97) 53 (29, 76)		-				
Prior allogeneic SCT	Yes No	56 (44) 71 (56)	84 (72, 92) 73 (61, 83)					_ ↓ ● ●↓	-
Prior blinatumomab	Yes No	53 (42) 74 (58)	72 (58, 83) 82 (72, 90)						
Prior inotuzumab	Yes No	40 (31) 87 (69)	65 (48, 79) 84 (74, 91)			-	•		-
				0	20	40	60	80	100

*The red dashed line denotes the Phase IIA null hypothesis (40%)

[‡]The black dashed line denotes the ORR among all treated patients (ORR=CR+CRi)

BM, bone marrow; CR, complete remission; CRI, CR with incomplete hematologic recovery; EMD, extramedullary disease; IRRC, Independent Response Review Committee; obe-cel, obecabtagene autoleucel; ORR, overall remission rate; SCT, stem cell transplant

FELIX: EFS in all treated patients*

The event-free survival estimate at 12 months was 50%

Patients at risk

127 104 94 85 78 68 60 55 52 45 34 33 29 27 27 22 18 18 16 12 12 6 5 4 4 4 3 3 3 3 2 2 2 2 2 2 1 0

- The median follow-up time was 16.6 months (range: 3.7–36.6 months)
- 17/99 (17%) responders proceeded to SCT while in remission
- A pooled analysis from the ALLCAR19 and FELIX Phase Ib studies will be presented as a poster on Saturday, December 9, 2023 5:30–7:30pm (Roddie C, et al. Abstract 2114)

FELIX: obe-cel persistence in responders

Obe-cel has high expansion and long-term persistence

• CAR-T persistence was detected in 72% of ongoing responders at the latest follow-up

AUC, area under the curve; CAR-T, chimeric antigen receptor T-cell; C_{max}, maximum concentration; CV, coefficient of variation; d, day; D, day; Geo, geometric; M, month; obe-cel, obecabtagene autoleucel; PB, peripheral blood; T_{max}, time to maximum concentration

FELIX: leukemic burden in all treated patients

Leukemic burden at screening is not predictive of leukemic burden prior to lymphodepletion

*Bridging therapy per physician's choice, including inotuzumab ozogamicin BM, bone marrow

FELIX: EFS by leukemic burden prior to lymphodepletion* Lower leukemic burden is associated with better outcomes

≥5−≤75% (n = 51)	51	43	41	39	36	31	28	25	23	18	15	15	13	12	12	9	8	8	7	4	4	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
>75% (n = 40)	40	27	22	18	17	13	10	10	10	9	5	5	5	4	4	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0

BM blasts % prior to lymphodepletion	<5%	≥5−≤75%	>75%
	(n = 36)	(n = 51)	(n = 40)
Median EFS (95% CI), months	NE	15.0 (6.6, NE)	4.5 (1.5, 9.0)
6-month EFS (95% CI), %	83	72	40
	(65, 92)	(57, 82)	(23, 56)
12-month EFS (95% CI), %	65	55	27
	(44, 80)	(38, 69)	(12, 44)

*Censoring new non-protocol anti-cancer therapies including SCT with disease assessment by IRRC (data cut-off date: September 13, 2023) BM, bone marrow; CI, confidence interval; EFS, event-free survival; IRRC, Independent Response Review Committee; NE, not evaluable; SCT, stem cell transplant

FELIX: CRS and ICANS Low rates of Grade ≥3 CRS and/or ICANS were observed

- No grade ≥3 CRS and/or ICANS were observed in patients with <5% BM blasts at lymphodepletion
- Vasopressors were used to treat CRS in 2.4% of patients

BM, bone marrow; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; ICU, intensive care unit

FELIX: TEAEs

Favorable safety profile

TEAEs that assumed in 200% of national recordless of sourcelity	All treated patients (N = 127)						
TEAES that occurred in 220% of patients regardless of causality	Any grade, %	Grade ≥3, %					
Patients with any TEAE	100	81					
CRS	69	2					
Pyrexia	29	2					
Nausea	26	2					
Diarrhea	25	2					
Febrile neutropenia	24	24					
Anemia	24	21					
Headache	24	0					
Neutropenia	23	21					
ICANS	23	7					
Hypotension	22	5					
Hypokalemia	21	6					
Neutrophil count decreased	20	20					

- 15% of patients were admitted to the ICU
- Two deaths were considered treatment-related per investigator assessment: neutropenic sepsis (n = 1); acute respiratory distress syndrome and ICANS (n = 1)

FELIX: Phase Ib/II conclusions

- Obe-cel successfully manufactured in 95% of leukapheresed patients
- High remission rates independent of leukemic burden at lymphodepletion
- 50% EFS estimate at 12 months, with only 17% of responders proceeding to SCT while in remission
- Favorable safety profile: 2% grade \geq 3 CRS and 7% grade \geq 3 ICANS
 - Severe toxicity mostly limited to patients with high leukemic burden at lymphodepletion
- Durable remission rates and toxicity inversely correlated with leukemic burden at lymphodepletion
 - Assessment of leukemic burden at lymphodepletion is essential for risk/benefit stratification

Obe-cel is effective treatment for R/R adult B-ALL, with better outcomes observed in patients with lower leukemic burden at lymphodepletion; longer follow-up is required

B-ALL, B-cell acute lymphoblastic leukemia; CRS, cytokine release syndrome; EFS, event-free survival; ICANS, immune effector cell-associated neurotoxicity syndrome; obe-cel, obecabtagene autoleucel; R/R, relapsed/refractory; SCT, stem cell transplant

Acknowledgments

- The authors would like to acknowledge:
 - Patients, families, friends, and caregivers
 - Study investigators and coordinators
 - Healthcare staff at the study sites
 - Autolus Therapeutics Teams

Contact: Dr Claire Roddie <u>c.roddie@ucl.ac.uk</u>